Telomere length predicts replicative capacity of human fibroblasts.

نویسندگان

  • R C Allsopp
  • H Vaziri
  • C Patterson
  • S Goldstein
  • E V Younglai
  • A B Futcher
  • C W Greider
  • C B Harley
چکیده

When human fibroblasts from different donors are grown in vitro, only a small fraction of the variation in their finite replicative capacity is explained by the chronological age of the donor. Because we had previously shown that telomeres, the terminal guanine-rich sequences of chromosomes, shorten throughout the life-span of cultured cells, we wished to determine whether variation in initial telomere length would account for the unexplained variation in replicative capacity. Analysis of cells from 31 donors (aged 0-93 yr) indicated relatively weak correlations between proliferative ability and donor age (m = -0.2 doubling per yr; r = -0.42; P = 0.02) and between telomeric DNA and donor age (m = -15 base pairs per yr; r = -0.43; P = 0.02). However, there was a striking correlation, valid over the entire age range of the donors, between replicative capacity and initial telomere length (m = 10 doublings per kilobase pair; r = 0.76; P = 0.004), indicating that cell strains with shorter telomeres underwent significantly fewer doublings than those with longer telomeres. These observations suggest that telomere length is a biomarker of somatic cell aging in humans and are consistent with a causal role for telomere loss in this process. We also found that fibroblasts from Hutchinson-Gilford progeria donors had short telomeres, consistent with their reduced division potential in vitro. In contrast, telomeres from sperm DNA did not decrease with age of the donor, suggesting that a mechanism for maintaining telomere length, such as telomerase expression, may be active in germ-line tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relation between maximum replicative capacity and oxidative stress-induced responses in human skin fibroblasts in vitro.

Cellular senescence, an important factor in ageing phenotypes, can be induced by replicative exhaustion or by stress. We investigated the relation between maximum replicative capacity, telomere length, stress-induced cellular senescence, and apoptosis/cell death in human primary fibroblast strains obtained from nonagenarians of the Leiden 85-plus Study. Fibroblast strains were cultured until re...

متن کامل

Normal telomere erosion rates at the single cell level in Werner syndrome fibroblast cells.

The aim of this study was to investigate whether the accelerated replicative senescence seen in Werner syndrome (WS) fibroblasts is due to accelerated telomere loss per cell division. Using single telomere length analysis (STELA) we show that the mean rate of telomere shortening in WS bulk cultures ranges between that of normal fibroblasts [99 bp/population doubling (PD)] and four times that of...

متن کامل

Stochastic variation in telomere shortening rate causes heterogeneity of human fibroblast replicative life span.

The replicative life span of human fibroblasts is heterogeneous, with a fraction of cells senescing at every population doubling. To find out whether this heterogeneity is due to premature senescence, i.e. driven by a nontelomeric mechanism, fibroblasts with a senescent phenotype were isolated from growing cultures and clones by flow cytometry. These senescent cells had shorter telomeres than t...

متن کامل

Effect of replicative age on transcriptional silencing near telomeres in Saccharomyces cerevisiae.

Individual yeasts have a finite replicative life span in similarity to normal human fibroblasts. Telomere loss is a hallmark of replicative senescence in normal human fibroblasts and has been proposed to play a role in cellular senescence, perhaps by affecting subtelomeric genes. While telomere loss does not occur with replicative age in yeast, subtelomeric genes are subject to transcriptional ...

متن کامل

استفاده از سلول بنیادی مزانشیمی در درمان: کیفیت یا کمیت؟

Background & objective: Mesenchymal stem cells (MSCs) are presently isolated from various human tissues such as bone marrow. These cells have relatively high replication potential and can differentiate into various cell lineages with mesodermal and non-mesodermal origin and therefore, show promising in treatment of diseases. Their striking features like availability of source, ease of isolation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 89 21  شماره 

صفحات  -

تاریخ انتشار 1992